Manual Page Result
0
Command: lh_new | Section: 3 | Source: OpenBSD | File: lh_new.3
LH_NEW(3) FreeBSD Library Functions Manual LH_NEW(3)
NAME
lh_new, lh_free, lh_insert, lh_delete, lh_retrieve, lh_doall,
lh_doall_arg, lh_error, LHASH_COMP_FN_TYPE, LHASH_HASH_FN_TYPE,
LHASH_DOALL_FN_TYPE, LHASH_DOALL_ARG_FN_TYPE, lh_strhash - dynamic hash
table
SYNOPSIS
#include <openssl/lhash.h>
DECLARE_LHASH_OF(<type>);
LHASH *
lh_<type>_new(void);
void
lh_<type>_free(LHASH_OF(<type>) *table);
<type> *
lh_<type>_insert(LHASH_OF(<type>) *table, <type> *data);
<type> *
lh_<type>_delete(LHASH_OF(<type>) *table, <type> *data);
<type> *
lh_<type>_retrieve(LHASH_OF(<type>) *table, <type> *data);
void
lh_<type>_doall(LHASH_OF(<type>) *table, LHASH_DOALL_FN_TYPE func);
void
lh_<type>_doall_arg(LHASH_OF(<type>) *table,
LHASH_DOALL_ARG_FN_TYPE func, <type2>, <type2> *arg);
int
lh_<type>_error(LHASH_OF(<type>) *table);
typedef int
(*LHASH_COMP_FN_TYPE)(const void *, const void *);
typedef unsigned long
(*LHASH_HASH_FN_TYPE)(const void *);
typedef void
(*LHASH_DOALL_FN_TYPE)(const void *);
typedef void
(*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *);
unsigned long
lh_strhash(const char *c);
DESCRIPTION
This library implements type-checked dynamic hash tables. The hash table
entries can be arbitrary structures. Usually they consist of key and
value fields.
lh_<type>_new() creates a new LHASH_OF(<type>) structure to store
arbitrary data entries, and provides the hash and compare callbacks to be
used in organising the table's entries. The hash callback takes a
pointer to a table entry as its argument and returns an unsigned long
hash value for its key field. The hash value is normally truncated to a
power of 2, so make sure that your hash function returns well mixed low
order bits. The compare callback takes two arguments (pointers to two
hash table entries), and returns 0 if their keys are equal, non-zero
otherwise. If your hash table will contain items of some particular type
and the hash and compare callbacks hash and compare these types, then the
DECLARE_LHASH_HASH_FN() and IMPLEMENT_LHASH_COMP_FN() macros can be used
to create callback wrappers of the prototypes required by
lh_<type>_new(). These provide per-variable casts before calling the
type-specific callbacks written by the application author. These macros,
as well as those used for the doall callbacks, are defined as;
#define DECLARE_LHASH_HASH_FN(name, o_type) \
unsigned long name##_LHASH_HASH(const void *);
#define IMPLEMENT_LHASH_HASH_FN(name, o_type) \
unsigned long name##_LHASH_HASH(const void *arg) { \
const o_type *a = arg; \
return name##_hash(a); }
#define LHASH_HASH_FN(name) name##_LHASH_HASH
#define DECLARE_LHASH_COMP_FN(name, o_type) \
int name##_LHASH_COMP(const void *, const void *);
#define IMPLEMENT_LHASH_COMP_FN(name, o_type) \
int name##_LHASH_COMP(const void *arg1, const void *arg2) { \
const o_type *a = arg1; \
const o_type *b = arg2; \
return name##_cmp(a,b); }
#define LHASH_COMP_FN(name) name##_LHASH_COMP
#define DECLARE_LHASH_DOALL_FN(name, o_type) \
void name##_LHASH_DOALL(void *);
#define IMPLEMENT_LHASH_DOALL_FN(name, o_type) \
void name##_LHASH_DOALL(void *arg) { \
o_type *a = arg; \
name##_doall(a); }
#define LHASH_DOALL_FN(name) name##_LHASH_DOALL
#define DECLARE_LHASH_DOALL_ARG_FN(name, o_type, a_type) \
void name##_LHASH_DOALL_ARG(void *, void *);
#define IMPLEMENT_LHASH_DOALL_ARG_FN(name, o_type, a_type) \
void name##_LHASH_DOALL_ARG(void *arg1, void *arg2) { \
o_type *a = arg1; \
a_type *b = arg2; \
name##_doall_arg(a, b); }
#define LHASH_DOALL_ARG_FN(name) name##_LHASH_DOALL_ARG
An example of a hash table storing (pointers to) structures of type
'STUFF' could be defined as follows;
/* Calculate the hash value of 'tohash' (implemented elsewhere) */
unsigned long STUFF_hash(const STUFF *tohash);
/* Order 'arg1' and 'arg2' (implemented elsewhere) */
int stuff_cmp(const STUFF *arg1, const STUFF *arg2);
/* Create type-safe wrapper functions for use in the LHASH internals */
static IMPLEMENT_LHASH_HASH_FN(stuff, STUFF);
static IMPLEMENT_LHASH_COMP_FN(stuff, STUFF);
/* ... */
int main(int argc, char *argv[]) {
/* Create the new hash table using the hash/compare wrappers */
LHASH_OF(STUFF) *hashtable =
lh_STUFF_new(LHASH_HASH_FN(STUFF_hash),
LHASH_COMP_FN(STUFF_cmp));
/* ... */
}
lh_<type>_free() frees the LHASH_OF(<type>) structure table. Allocated
hash table entries will not be freed; consider using lh_<type>_doall() to
deallocate any remaining entries in the hash table (see below).
lh_<type>_insert() inserts the structure pointed to by data into table.
If there already is an entry with the same key, the old value is
replaced. Note that lh_<type>_insert() stores pointers, the data are not
copied.
lh_<type>_delete() deletes an entry from table.
lh_<type>_retrieve() looks up an entry in table. Normally, data is a
structure with the key field(s) set; the function will return a pointer
to a fully populated structure.
lh_<type>_doall() will, for every entry in the hash table, call func with
the data item as its parameter. For lh_<type>_doall() and
lh_<type>_doall_arg(), function pointer casting should be avoided in the
callbacks (see NOTES) -- instead use the declare/implement macros to
create type-checked wrappers that cast variables prior to calling your
type-specific callbacks. An example of this is illustrated here where
the callback is used to cleanup resources for items in the hash table
prior to the hashtable itself being deallocated:
/* Clean up resources belonging to 'a' (this is implemented elsewhere) */
void STUFF_cleanup_doall(STUFF *a);
/* Implement a prototype-compatible wrapper for "STUFF_cleanup" */
IMPLEMENT_LHASH_DOALL_FN(STUFF_cleanup, STUFF)
/* ... then later in the code ... */
/* So to run "STUFF_cleanup" against all items in a hash table ... */
lh_STUFF_doall(hashtable, LHASH_DOALL_FN(STUFF_cleanup));
/* Then the hash table itself can be deallocated */
lh_STUFF_free(hashtable);
A callback may delete entries from the hash table, however, it is not
safe to insert new entries.
lh_<type>_doall_arg() is the same as lh_<type>_doall() except that func
will be called with arg as the second argument and func should be of type
LHASH_DOALL_ARG_FN_TYPE (a callback prototype that is passed both the
table entry and an extra argument). As with lh_<type>_doall(), you can
instead choose to declare your callback with a prototype matching the
types you are dealing with and use the declare/implement macros to create
compatible wrappers that cast variables before calling your type-specific
callbacks. An example of this is demonstrated here (printing all hash
table entries to a BIO that is provided by the caller):
/* Print item 'a' to 'output_bio' (this is implemented elsewhere) */
void STUFF_print_doall_arg(const STUFF *a, BIO *output_bio);
/* Implement a prototype-compatible wrapper for "STUFF_print" */
static IMPLEMENT_LHASH_DOALL_ARG_FN(STUFF, const STUFF, BIO)
/* ... then later in the code ... */
/* Print out the entire hashtable to a particular BIO */
lh_STUFF_doall_arg(hashtable, LHASH_DOALL_ARG_FN(STUFF_print), BIO,
logging_bio);
lh_<type>_error() can be used to determine if an error occurred in the
last operation.
RETURN VALUES
lh_<type>_new() returns NULL on error, otherwise a pointer to the new
LHASH structure.
When a hash table entry is replaced, lh_<type>_insert() returns the value
being replaced. NULL is returned on normal operation and on error.
lh_<type>_delete() returns the entry being deleted. NULL is returned if
there is no such value in the hash table.
lh_<type>_retrieve() returns the hash table entry if it has been found,
or NULL otherwise.
lh_<type>_error() returns 1 if an error occurred in the last operation,
or 0 otherwise.
NOTES
The various LHASH macros and callback types exist to make it possible to
write type-checked code without resorting to function-prototype casting
-- an evil that makes application code much harder to audit/verify and
also opens the window of opportunity for stack corruption and other hard-
to-find bugs. It also, apparently, violates ANSI-C.
The LHASH code regards table entries as constant data. As such, it
internally represents lh_<type>_insert()'ed items with a const void *
pointer type. This is why callbacks such as those used by
lh_<type>_doall() and lh_<type>_doall_arg() declare their prototypes with
"const", even for the parameters that pass back the table items' data
pointers -- for consistency, user-provided data is "const" at all times
as far as the LHASH code is concerned. However, as callers are
themselves providing these pointers, they can choose whether they too
should be treating all such parameters as constant.
As an example, a hash table may be maintained by code that, for reasons
of encapsulation, has only "const" access to the data being indexed in
the hash table (i.e. it is returned as "const" from elsewhere in their
code) -- in this case the LHASH prototypes are appropriate as-is.
Conversely, if the caller is responsible for the life-time of the data in
question, then they may well wish to make modifications to table item
passed back in the lh_<type>_doall() or lh_<type>_doall_arg() callbacks
(see the "STUFF_cleanup" example above). If so, the caller can either
cast the "const" away (if they're providing the raw callbacks themselves)
or use the macros to declare/implement the wrapper functions without
"const" types.
Callers that only have "const" access to data they are indexing in a
table, yet declare callbacks without constant types (or cast the "const"
away themselves), are therefore creating their own risks/bugs without
being encouraged to do so by the API. On a related note, those auditing
code should pay special attention to any instances of
DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that provide types without
any "const" qualifiers.
INTERNALS
The following description is based on the SSLeay documentation:
The lhash library implements a hash table described in the Communications
of the ACM in 1991. What makes this hash table different is that as the
table fills, the hash table is increased (or decreased) in size via
reallocarray(3). When a 'resize' is done, instead of all hashes being
redistributed over twice as many 'buckets', one bucket is split. So when
an 'expand' is done, there is only a minimal cost to redistribute some
values. Subsequent inserts will cause more single 'bucket'
redistributions but there will never be a sudden large cost due to
redistributing all the 'buckets'.
The state for a particular hash table is kept in the LHASH structure.
The decision to increase or decrease the hash table size is made
depending on the 'load' of the hash table. The load is the number of
items in the hash table divided by the size of the hash table. The
default values are as follows. If (hash->up_load < load) => expand. If
(hash->down_load > load) => contract. The up_load has a default value of
1 and down_load has a default value of 2. These numbers can be modified
by the application by just playing with the up_load and down_load
variables. The 'load' is kept in a form which is multiplied by 256. So
hash->up_load=8*256 will cause a load of 8 to be set.
If you are interested in performance, the field to watch is
num_comp_calls. The hash library keeps track of the 'hash' value for
each item so when a lookup is done, the 'hashes' are compared, if there
is a match, then a full compare is done, and hash->num_comp_calls is
incremented. If num_comp_calls is not equal to num_delete plus
num_retrieve, it means that your hash function is generating hashes that
are the same for different values. It is probably worth changing your
hash function if this is the case because even if your hash table has 10
items in a 'bucket', it can be searched with 10 unsigned long compares
and 10 linked list traverses. This will be much less expensive that 10
calls to your compare function.
lh_strhash() is a demo string hashing function. Since the LHASH routines
would normally be passed structures, this routine would not normally be
passed to lh_<type>_new(), rather it would be used in the function passed
to lh_<type>_new().
SEE ALSO
crypto(3)
HISTORY
lh_new(), lh_free(), lh_insert(), lh_delete(), lh_retrieve(), lh_doall(),
and lh_strhash() appeared in SSLeay 0.4 or earlier. lh_doall_arg() first
appeared in SSLeay 0.5.1. These functions have been available since
OpenBSD 2.4.
lh_<type>_error() was added in SSLeay 0.9.1b.
In OpenSSL 0.9.7, all lhash functions that were passed function pointers
were changed for better type safety, and the function types
LHASH_COMP_FN_TYPE, LHASH_HASH_FN_TYPE, LHASH_DOALL_FN_TYPE, and
LHASH_DOALL_ARG_FN_TYPE became available.
In OpenSSL 1.0.0, the lhash interface was revamped for even better type
checking.
BUGS
lh_<type>_insert() returns NULL both for success and error.
FreeBSD 14.1-RELEASE-p8 March 5, 2024 FreeBSD 14.1-RELEASE-p8