*** UNIX MANUAL PAGE BROWSER ***

A Nergahak database for man pages research.

Navigation

Directory Browser

1Browse 4.4BSD4.4BSD
1Browse Digital UNIXDigital UNIX 4.0e
1Browse FreeBSDFreeBSD 14.3
1Browse MINIXMINIX 3.4.0rc6-d5e4fc0
1Browse NetBSDNetBSD 10.1
1Browse OpenBSDOpenBSD 7.7
1Browse UNIX v7Version 7 UNIX
1Browse UNIX v10Version 10 UNIX

Manual Page Search

Manual Page Result

0 Command: csqrtl | Section: 3 | Source: FreeBSD | File: csqrtl.3.gz
CSQRT(3) FreeBSD Library Functions Manual CSQRT(3) NAME csqrt, csqrtf, csqrtl - complex square root functions LIBRARY Math Library (libm, -lm) SYNOPSIS #include <complex.h> double complex csqrt(double complex z); float complex csqrtf(float complex z); long double complex csqrtl(long double complex z); DESCRIPTION The csqrt(), csqrtf(), and csqrtl() functions compute the square root of z in the complex plane, with a branch cut along the negative real axis. In other words, csqrt(), csqrtf(), and csqrtl() always return the square root whose real part is non-negative. RETURN VALUES These functions return the requested square root. The square root of 0 is +0 +- 0, where the imaginary parts of the input and respective result have the same sign. For infinities and NaNs, the following rules apply, with the earlier rules having precedence: Input Result k + infinity*I infinity + infinity*I (for all k) -infinity + NaN*I NaN +- infinity*I infinity + NaN*I infinity + NaN*I k + NaN*I NaN + NaN*I NaN + k*I NaN + NaN*I -infinity + k*I +0 + infinity*I infinity + k*I infinity + 0*I For numbers with negative imaginary parts, the above special cases apply given the identity: csqrt(conj(z)) = conj(csqrt(z)) Note that the sign of NaN is indeterminate. Also, if the real or imaginary part of the input is finite and an NaN is generated, an invalid exception will be thrown. SEE ALSO cabs(3), fenv(3), math(3) STANDARDS The csqrt(), csqrtf(), and csqrtl() functions conform to ISO/IEC 9899:1999 ("ISO C99"). BUGS For csqrt() and csqrtl(), inexact results are not always correctly rounded. FreeBSD 14.1-RELEASE-p8 November 4, 2018 FreeBSD 14.1-RELEASE-p8

Navigation Options