Manual Page Result
0
Command: csqrt | Section: 3 | Source: Digital UNIX | File: csqrt.3.gz
complex(3) Library Functions Manual complex(3)
NAME
csin, ccos, cdiv, cexp, clog, cmul, cpow, csqrt - Complex functions
LIBRARY
Math Library (libm.a)
SYNOPSIS
#include <math.h>
double_complex csin (double x, double y); float_complex
csinf (float x, float y); double_complex ccos (double x, double
y); float_complex ccosf (float x, float y); double_complex
cdiv (double a, double b, double c, double d); float_complex
cdivf (float a, float b, float c, float d); double_complex
cexp (double x, double y); float_complex cexpf (float x, float
y); double_complex clog (double x, double y); float_complex
clogf (float x, float y); double_complex cmul (double a, double
b, double c, double d); float_complex cmulf (float a, float b,
float c, float d); double_complex cpow (double a, double b, double c,
double d); float_complex cpowf (float a, float b, float c,
float d); double_complex csqrt (double x, double y); float_complex
csqrtf (float x, float y);
DESCRIPTION
These functions can only be called from languages that support the dou-
ble_complex and float_complex data types.
csin() and csinf() compute the sine of a complex number.
ccos() and ccosf() return the cosine of a complex number.
cdiv() and cdivf() return the quotient of two complex numbers:
(a+ib)/(c+id).
cexp() and cexpf() return the exponential of a complex number.
clog() and clogf() return the natural logarithm of a complex number.
cmul() and cmulf() return the product of two complex numbers.
cmul(a,b,c,d) is equivalent to (a + ib) * (c + id).
cpow() and cpowf() raise a complex base (a + ib) to a complex exponent
(c + id). cpow(a,b,c,d) is equivalent to e**((c + id) ln(a + ib)).
csqrt() and csqrtf() compute the square root of a complex number, x +
iy. The real part of csqrt is greater than or equal to zero.
tab(@); lfHB lfHB lfHB l l l . _
Function@Exceptional Argument@Routine Behavior
_
csin(), csinf()@|y| = infinity @invalid argument csin(),
csinf()@(sinh x sin y) > max_float @overflow csin(), csinf()@(cosh x
cos y) > max_float @overflow ccos(), ccosf()@|y| = infinity
@invalid argument ccos(), ccosf()@(sin x sinh y) > max_float @overflow
ccos(), ccosf()@(cos x cosh y) > max_float @overflow cdiv(),
cdivf()@c=0 and d=0 @divide by zero cdiv(),
cdivf()@a=b=c=d=0 @invalid argument cexp(),
cexpf()@|y| = infinity @invalid argument cexp(),
cexpf()@|e**x cos y| > max_float @overflow cexp(), cexpf()@|e**x sin
y| > max_float @overflow cexp(), cexpf()@|e**x cos y| < min_float
@underflow cexp(), cexpf()@|e**x sin y| < min_float @underflow
clog(), clogf()@y=0 and x=0 @invalid argument clog(),
clogf()@|x| = |y| = infinity @invalid argument cpow(),
cpowf()@sqrt(a**2 + b**2) > max_float@overflow cpow(), cpowf()@c/2 *
ln(a**2 + b**2) > max_float@overflow cpow(), cpowf()@c/2 * ln(a**2 +
b**2) @overflow @ - (d * atan2(b,c)) > max_float
_
tab(@); lfHB lfHB lfHB lfHB lfHB lfHB lfHB lfHB l l l l . _
Value@Data@Hexadecimal Value@Decimal Value Name@Type
_
max_float @F_FLOAT @FFFF7FFF @1.701411e38
@G_FLOAT @FFFFFFFFFFFF7FFF @8.988465674311579e307
@S_FLOAT @7F7FFFFF @3.402823e38
@T_FLOAT @7FEFFFFFFFFFFFFF @1.797693134862316e308
min_float @F_FLOAT @00000080 @2.9387359e-39
@G_FLOAT @0000000000000010 @5.562684646268003e-309
@S_FLOAT @00000001 @1.4012985e-45
@T_FLOAT @0000000000000001 @4.940656458412465e-324
_
RELATED INFORMATION
cabs(3) delim off
complex(3)