Manual Page Result
0
Command: X25519 | Section: 3 | Source: OpenBSD | File: X25519.3
X25519(3) FreeBSD Library Functions Manual X25519(3)
NAME
X25519, X25519_keypair, ED25519_keypair, ED25519_sign, ED25519_verify -
Elliptic Curve Diffie-Hellman and signature primitives based on
Curve25519
SYNOPSIS
#include <openssl/curve25519.h>
int
X25519(uint8_t out_shared_key[X25519_KEY_LENGTH],
const uint8_t private_key[X25519_KEY_LENGTH],
const uint8_t peer_public_value[X25519_KEY_LENGTH]);
void
X25519_keypair(uint8_t out_public_value[X25519_KEY_LENGTH],
uint8_t out_private_key[X25519_KEY_LENGTH]);
void
ED25519_keypair(uint8_t out_public_key[ED25519_PUBLIC_KEY_LENGTH],
uint8_t out_private_key[ED25519_PRIVATE_KEY_LENGTH]);
int
ED25519_sign(uint8_t *out_sig, const uint8_t *message,
size_t message_len,
const uint8_t public_key[ED25519_PUBLIC_KEY_LENGTH],
const uint8_t private_key_seed[ED25519_PRIVATE_KEY_LENGTH]);
int
ED25519_verify(const uint8_t *message, size_t message_len,
const uint8_t signature[ED25519_SIGNATURE_LENGTH],
const uint8_t public_key[ED25519_PUBLIC_KEY_LENGTH]);
DESCRIPTION
Curve25519 is an elliptic curve over a prime field specified in RFC 7748
section 4.1. The prime field is defined by the prime number 2^255 - 19.
X25519 is the Diffie-Hellman primitive built from Curve25519 as described
in RFC 7748 section 5. Section 6.1 describes the intended use in an
Elliptic Curve Diffie-Hellman (ECDH) protocol.
X25519() writes a shared key to out_shared_key that is calculated from
the given private_key and the peer_public_value by scalar multiplication.
Do not use the shared key directly, rather use a key derivation function
and also include the two public values as inputs.
X25519_keypair() sets out_public_value and out_private_key to a freshly
generated public/private key pair. First, the out_private_key is
generated with arc4random_buf(3). Then, the opposite of the masking
described in RFC 7748 section 5 is applied to it to make sure that the
generated private key is never correctly masked. The purpose is to cause
incorrect implementations on the peer side to consistently fail. Correct
implementations will decode the key correctly even when it is not
correctly masked. Finally, the out_public_value is calculated from the
out_private_key by multiplying it with the Montgomery base point uint8_t
u[32] = {9}.
The size of a public and private key is X25519_KEY_LENGTH = 32 bytes
each.
Ed25519 is a signature scheme using a twisted Edwards curve that is
birationally equivalent to Curve25519.
ED25519_keypair() sets out_public_key and out_private_key to a freshly
generated public/private key pair. First, the out_private_key is
generated with arc4random_buf(3). Then, the out_public_key is calculated
from the private key.
ED25519_sign() signs the message of message_len bytes using the
public_key and the private_key and writes the signature to out_sig.
ED25519_verify() checks that signing the message of message_len bytes
using the public_key would indeed result in the given signature.
The sizes of a public and private keys are ED25519_PUBLIC_KEY_LENGTH and
ED25519_PRIVATE_KEY_LENGTH, which are both 32 bytes, and the size of a
signature is ED25519_SIGNATURE_LENGTH = 64 bytes.
RETURN VALUES
X25519() and ED25519_sign() return 1 on success or 0 on error. X25519()
can fail if the input is a point of small order. ED25519_sign() always
succeeds in LibreSSL, but the API reserves the return value 0 for memory
allocation failure.
ED25519_verify() returns 1 if the signature is valid or 0 otherwise.
SEE ALSO
ECDH_compute_key(3), EVP_DigestSign(3), EVP_DigestVerify(3),
EVP_PKEY_derive(3), EVP_PKEY_keygen(3)
Daniel J. Bernstein, A state-of-the-art Diffie-Hellman function: How do I
use Curve25519 in my own software?, https://cr.yp.to/ecdh.html.
Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang, "High-Speed High-Security Signatures", Cryptographic Hardware and
Embedded Systems -- CHES 2011, Springer, Lecture Notes in Computer
Science, vol 6917, https://doi.org/10.1007/978-3-642-23951-9_9, Nara,
Japan, September 29, 2011.
STANDARDS
RFC 7748: Elliptic Curves for Security
RFC 8032: Edwards-Curve Digital Signature Algorithm (EdDSA)
FreeBSD 14.1-RELEASE-p8 December 15, 2022 FreeBSD 14.1-RELEASE-p8