*** UNIX MANUAL PAGE BROWSER ***

A Nergahak database for man pages research.

Navigation

Directory Browser

1Browse 4.4BSD4.4BSD
1Browse Digital UNIXDigital UNIX 4.0e
1Browse FreeBSDFreeBSD 14.3
1Browse MINIXMINIX 3.4.0rc6-d5e4fc0
1Browse NetBSDNetBSD 10.1
1Browse OpenBSDOpenBSD 7.7
1Browse UNIX v7Version 7 UNIX
1Browse UNIX v10Version 10 UNIX

Manual Page Search

Manual Page Result

0 Command: SHA512_224_End | Section: 3 | Source: FreeBSD | File: SHA512_224_End.3.gz
SHA512(3) FreeBSD Library Functions Manual SHA512(3) NAME SHA512_Init, SHA512_Update, SHA512_Final, SHA512_End, SHA512_File, SHA512_FileChunk, SHA512_Data, SHA384_Init, SHA384_Update, SHA384_Final, SHA384_End, SHA384_File, SHA384_FileChunk, SHA384_Data, SHA512_224_Init, SHA512_224_Update, SHA512_224_Final, SHA512_224_End, SHA512_224_File, SHA512_224_FileChunk, SHA512_224_Data SHA512_256_Init, SHA512_256_Update, SHA512_256_Final, SHA512_256_End, SHA512_256_File, SHA512_256_FileChunk, SHA512_256_Data - calculate the FIPS 180-4 ``SHA-512'' family of message digests LIBRARY Message Digest (MD4, MD5, etc.) Support Library (libmd, -lmd) SYNOPSIS #include <sys/types.h> #include <sha512.h> void SHA512_Init(SHA512_CTX *context); void SHA512_Update(SHA512_CTX *context, const unsigned char *data, size_t len); void SHA512_Final(unsigned char digest[64], SHA512_CTX *context); char * SHA512_End(SHA512_CTX *context, char *buf); char * SHA512_File(const char *filename, char *buf); char * SHA512_FileChunk(const char *filename, char *buf, off_t offset, off_t length); char * SHA512_Data(const unsigned char *data, unsigned int len, char *buf); #include <sha384.h> void SHA384_Init(SHA384_CTX *context); void SHA384_Update(SHA384_CTX *context, const unsigned char *data, size_t len); void SHA384_Final(unsigned char digest[48], SHA384_CTX *context); char * SHA384_End(SHA384_CTX *context, char *buf); char * SHA384_File(const char *filename, char *buf); char * SHA384_FileChunk(const char *filename, char *buf, off_t offset, off_t length); char * SHA384_Data(const unsigned char *data, unsigned int len, char *buf); #include <sha512t.h> void SHA512_224_Init(SHA512_CTX *context); void SHA512_224_Update(SHA512_CTX *context, const unsigned char *data, size_t len); void SHA512_224_Final(unsigned char digest[32], SHA512_CTX *context); char * SHA512_224_End(SHA512_CTX *context, char *buf); char * SHA512_224_File(const char *filename, char *buf); char * SHA512_224_FileChunk(const char *filename, char *buf, off_t offset, off_t length); char * SHA512_224_Data(const unsigned char *data, unsigned int len, char *buf); void SHA512_256_Init(SHA512_CTX *context); void SHA512_256_Update(SHA512_CTX *context, const unsigned char *data, size_t len); void SHA512_256_Final(unsigned char digest[32], SHA512_CTX *context); char * SHA512_256_End(SHA512_CTX *context, char *buf); char * SHA512_256_File(const char *filename, char *buf); char * SHA512_256_FileChunk(const char *filename, char *buf, off_t offset, off_t length); char * SHA512_256_Data(const unsigned char *data, unsigned int len, char *buf); DESCRIPTION The SHA512_ functions calculate a 512-bit cryptographic checksum (digest) for any number of input bytes. A cryptographic checksum is a one-way hash function; that is, it is computationally impractical to find the input corresponding to a particular output. This net result is a "fingerprint" of the input-data, which does not disclose the actual input. The SHA512_Init(), SHA512_Update(), and SHA512_Final() functions are the core functions. Allocate an SHA512_CTX, initialize it with SHA512_Init(), run over the data with SHA512_Update(), and finally extract the result using SHA512_Final(), which will also erase the SHA512_CTX. SHA512_End() is a wrapper for SHA512_Final() which converts the return value to a 129-character (including the terminating '\0') ASCII string which represents the 512 bits in hexadecimal. SHA512_File() calculates the digest of a file, and uses SHA512_End() to return the result. If the file cannot be opened, a null pointer is returned. SHA512_FileChunk() is similar to SHA512_File(), but it only calculates the digest over a byte-range of the file specified, starting at offset and spanning length bytes. If the length parameter is specified as 0, or more than the length of the remaining part of the file, SHA512_FileChunk() calculates the digest from offset to the end of file. SHA512_Data() calculates the digest of a chunk of data in memory, and uses SHA512_End() to return the result. When using SHA512_End(), SHA512_File(), or SHA512_Data(), the buf argument can be a null pointer, in which case the returned string is allocated with malloc(3) and subsequently must be explicitly deallocated using free(3) after use. If the buf argument is non-null it must point to at least 129 characters of buffer space. The SHA384_, SHA512_224, and SHA512_256_ functions are identical to the SHA512_ functions except they use a different initial hash value and the output is truncated to 384, 224, and 256 bits respectively. SHA384_End() is a wrapper for SHA384_Final() which converts the return value to a 97-character (including the terminating '\0') ASCII string which represents the 384 bits in hexadecimal. SHA512_224_End() is a wrapper for SHA512_Final() which converts the return value to a 57-character (including the terminating '\0') ASCII string which represents the 224 bits in hexadecimal. SHA512_224_End() is a wrapper for SHA512_Final() which converts the return value to a 57-character (including the terminating '\0') ASCII string which represents the 224 bits in hexadecimal. SHA512_256_End() is a wrapper for SHA512_Final() which converts the return value to a 65-character (including the terminating '\0') ASCII string which represents the 256 bits in hexadecimal. ERRORS The SHA512_End() function called with a null buf argument may fail and return NULL if: [ENOMEM] Insufficient storage space is available. The SHA512_File() and SHA512_FileChunk() may return NULL when underlying open(2), fstat(2), lseek(2), or SHA512_End(3) fail. SEE ALSO md4(3), md5(3), ripemd(3), sha(3), sha256(3), sha512(3), skein(3) HISTORY These functions appeared in FreeBSD 9.0. AUTHORS The core hash routines were implemented by Colin Percival based on the published FIPS 180-2 standard. BUGS No method is known to exist which finds two files having the same hash value, nor to find a file with a specific hash value. There is on the other hand no guarantee that such a method does not exist. FreeBSD 14.1-RELEASE-p8 February 3, 2023 FreeBSD 14.1-RELEASE-p8

Navigation Options