Manual Page Result
0
Command: EVP_AEAD_CTX_init | Section: 3 | Source: OpenBSD | File: EVP_AEAD_CTX_init.3
EVP_AEAD_CTX_INIT(3) FreeBSD Library Functions Manual EVP_AEAD_CTX_INIT(3)
NAME
EVP_AEAD_CTX_new, EVP_AEAD_CTX_free, EVP_AEAD_CTX_init,
EVP_AEAD_CTX_cleanup, EVP_AEAD_CTX_open, EVP_AEAD_CTX_seal,
EVP_AEAD_key_length, EVP_AEAD_max_overhead, EVP_AEAD_max_tag_len,
EVP_AEAD_nonce_length, EVP_aead_aes_128_gcm, EVP_aead_aes_256_gcm,
EVP_aead_chacha20_poly1305, EVP_aead_xchacha20_poly1305 - authenticated
encryption with additional data
SYNOPSIS
#include <openssl/evp.h>
EVP_AEAD_CTX *
EVP_AEAD_CTX_new(void);
void
EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx);
int
EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
const unsigned char *key, size_t key_len, size_t tag_len,
ENGINE *engine);
void
EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
int
EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, unsigned char *out,
size_t *out_len, size_t max_out_len, const unsigned char *nonce,
size_t nonce_len, const unsigned char *in, size_t in_len,
const unsigned char *ad, size_t ad_len);
int
EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, unsigned char *out,
size_t *out_len, size_t max_out_len, const unsigned char *nonce,
size_t nonce_len, const unsigned char *in, size_t in_len,
const unsigned char *ad, size_t ad_len);
size_t
EVP_AEAD_key_length(const EVP_AEAD *aead);
size_t
EVP_AEAD_max_overhead(const EVP_AEAD *aead);
size_t
EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
size_t
EVP_AEAD_nonce_length(const EVP_AEAD *aead);
const EVP_AEAD *
EVP_aead_aes_128_gcm(void);
const EVP_AEAD *
EVP_aead_aes_256_gcm(void);
const EVP_AEAD *
EVP_aead_chacha20_poly1305(void);
const EVP_AEAD *
EVP_aead_xchacha20_poly1305(void);
DESCRIPTION
AEAD (Authenticated Encryption with Additional Data) couples
confidentiality and integrity in a single primitive. AEAD algorithms
take a key and can then seal and open individual messages. Each message
has a unique, per-message nonce and, optionally, additional data which is
authenticated but not included in the output.
EVP_AEAD_CTX_new() allocates a new context for use with
EVP_AEAD_CTX_init(). It can be cleaned up for reuse with
EVP_AEAD_CTX_cleanup() and must be freed with EVP_AEAD_CTX_free().
EVP_AEAD_CTX_free() cleans up ctx and frees the space allocated to it.
EVP_AEAD_CTX_init() initializes the context ctx for the given AEAD
algorithm aead. The engine argument must be NULL for the default
implementation; other values are not supported. Authentication tags may
be truncated by passing a tag length. A tag_len argument of
EVP_AEAD_DEFAULT_TAG_LENGTH, which has the value 0, causes the default
tag length to be used.
EVP_AEAD_CTX_cleanup() frees any data allocated for the context ctx.
After EVP_AEAD_CTX_cleanup(), ctx is in the same state as after
EVP_AEAD_CTX_new().
EVP_AEAD_CTX_open() authenticates the input in and optional additional
data ad, decrypting the input and writing it as output out. This
function may be called (with the same EVP_AEAD_CTX) concurrently with
itself or with EVP_AEAD_CTX_seal(). At most the number of input bytes
are written as output. In order to ensure success, max_out_len should be
at least the same as the input length in_len. On successful return
out_len is set to the actual number of bytes written. The length of the
nonce specified with nonce_len must be equal to the result of
EVP_AEAD_nonce_length for this AEAD. EVP_AEAD_CTX_open() never results
in partial output. If max_out_len is insufficient, zero will be returned
and out_len will be set to zero. If the input and output are aliased
then out must be <= in.
EVP_AEAD_CTX_seal() encrypts and authenticates the input and
authenticates any additional data provided in ad, the encrypted input and
authentication tag being written as output out. This function may be
called (with the same EVP_AEAD_CTX) concurrently with itself or with
EVP_AEAD_CTX_open(). At most max_out_len bytes are written as output
and, in order to ensure success, this value should be the in_len plus the
result of EVP_AEAD_max_overhead(). On successful return, out_len is set
to the actual number of bytes written. The length of the nonce specified
with nonce_len must be equal to the result of EVP_AEAD_nonce_length() for
this AEAD. EVP_AEAD_CTX_seal() never results in a partial output. If
max_out_len is insufficient, zero will be returned and out_len will be
set to zero. If the input and output are aliased then out must be <= in.
EVP_AEAD_key_length(), EVP_AEAD_max_overhead(), EVP_AEAD_max_tag_len(),
and EVP_AEAD_nonce_length() provide information about the AEAD algorithm
aead.
EVP_AEAD_max_tag_len() returns the maximum tag length that can be used
with the given aead. This is the largest value that can be passed as the
tag_len argument to EVP_AEAD_CTX_init(). No built-in EVP_AEAD object has
a maximum tag length larger than the constant EVP_AEAD_MAX_TAG_LENGTH.
All cipher algorithms have a fixed key length unless otherwise stated.
The following ciphers are available:
EVP_aead_aes_128_gcm()
AES-128 in Galois Counter Mode, using a key_len of 16 bytes
and a nonce_len of 12 bytes.
EVP_aead_aes_256_gcm()
AES-256 in Galois Counter Mode, using a key_len of 32 bytes
and a nonce_len of 12 bytes.
EVP_aead_chacha20_poly1305()
ChaCha20 with a Poly1305 authenticator, using a key_len of
32 bytes and a nonce_len of 12 bytes. The constant
EVP_CHACHAPOLY_TLS_TAG_LEN specifies the length of the
authentication tag in bytes and has a value of 16.
EVP_aead_xchacha20_poly1305()
XChaCha20 with a Poly1305 authenticator, using a key_len of
32 bytes and a nonce_len of 24 bytes.
Unless compatibility with other implementations like OpenSSL or BoringSSL
is required, using the EVP_AEAD interface to AEAD ciphers is recommended
in preference to the functions documented in the EVP_EncryptInit(3),
EVP_aes_256_gcm(3), and EVP_chacha20_poly1305(3) manual pages. The code
then becomes transparent to the AEAD cipher used and much more flexible.
It is also safer to use as it prevents common mistakes with the EVP APIs.
RETURN VALUES
EVP_AEAD_CTX_new() returns the new EVP_AEAD_CTX object on success;
otherwise NULL is returned and errno is set to ENOMEM.
EVP_AEAD_CTX_init(), EVP_AEAD_CTX_open(), and EVP_AEAD_CTX_seal() return
1 for success or zero for failure.
EVP_AEAD_key_length() returns the length of the key used for this AEAD.
EVP_AEAD_max_overhead() returns the maximum number of additional bytes
added by the act of sealing data with the AEAD.
EVP_AEAD_max_tag_len() returns the maximum tag length when using this
AEAD.
EVP_AEAD_nonce_length() returns the length of the per-message nonce.
EXAMPLES
Encrypt a string using ChaCha20-Poly1305:
const EVP_AEAD *aead = EVP_aead_chacha20_poly1305();
static const unsigned char nonce[32] = {0};
size_t buf_len, nonce_len;
EVP_AEAD_CTX *ctx;
ctx = EVP_AEAD_CTX_new();
EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead),
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL);
nonce_len = EVP_AEAD_nonce_length(aead);
EVP_AEAD_CTX_seal(ctx, out, &out_len, BUFSIZE, nonce,
nonce_len, in, in_len, NULL, 0);
EVP_AEAD_CTX_free(ctx);
SEE ALSO
evp(3), EVP_EncryptInit(3)
STANDARDS
A. Langley, W. Chang, N. Mavrogiannopoulos, J. Strombergson, and S.
Josefsson, ChaCha20-Poly1305 Cipher Suites for Transport Layer Security
(TLS), RFC 7905, June 2016.
S. Arciszewski, XChaCha: eXtended-nonce ChaCha and
AEAD_XChaCha20_Poly1305, draft-arciszewski-xchacha-02, October 2018.
HISTORY
AEAD is based on the implementation by Adam Langley for
Chromium/BoringSSL and first appeared in OpenBSD 5.6.
EVP_AEAD_CTX_new() and EVP_AEAD_CTX_free() first appeared in OpenBSD 7.1.
CAVEATS
The original publications and code by Adam Langley used a modified AEAD
construction that is incompatible with the common style used by AEAD in
TLS and incompatible with RFC 7905:
A. Langley and W. Chang, ChaCha20 and Poly1305 based Cipher Suites for
TLS, draft-agl-tls-chacha20poly1305-04, November 2013.
Y. Nir and A. Langley, ChaCha20 and Poly1305 for IETF Protocols, RFC
8439, June 2018.
In particular, the original version used a nonce_len of 8 bytes.
FreeBSD 14.1-RELEASE-p8 July 21, 2024 FreeBSD 14.1-RELEASE-p8